A human PET study of [11C]HMS011, a potential radioligand for AMPA receptors

نویسندگان

  • Keisuke Takahata
  • Yasuyuki Kimura
  • Chie Seki
  • Masaki Tokunaga
  • Masanori Ichise
  • Kazunori Kawamura
  • Maiko Ono
  • Soichiro Kitamura
  • Manabu Kubota
  • Sho Moriguchi
  • Tatsuya Ishii
  • Yuhei Takado
  • Fumitoshi Niwa
  • Hironobu Endo
  • Tomohisa Nagashima
  • Yoko Ikoma
  • Ming-Rong Zhang
  • Tetsuya Suhara
  • Makoto Higuchi
چکیده

BACKGROUND α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor is a primary mediator of fast glutamatergic excitatory signaling in the brain and has been implicated in diverse neuropsychiatric diseases. We recently developed a novel positron emission tomography (PET) ligand, 2-(1-(3-([11C]methylamino)phenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl) benzonitrile ([11C]HMS011). This compound is a radiolabelled derivative of perampanel, an antiepileptic drug acting on AMPA receptors, and was demonstrated to have promising in vivo properties in the rat and monkey brains. In the current study, we performed a human PET study using [11C]HMS011 to evaluate its safety and kinetics. Four healthy male subjects underwent a 120-min PET scan after injection of [11C]HMS011. Arterial blood sampling and metabolite analysis were performed to obtain parent input functions for three of the subjects using high-performance liquid chromatography. Regional distribution volumes (V Ts) were calculated based on kinetic models with and without considering radiometabolite in the brain. The binding was also quantified using a reference tissue model with white matter as reference. RESULTS Brain uptake of [11C]HMS011 was observed quickly after the injection, followed by a rapid clearance. Three hydrophilic and one lipophilic radiometabolites appeared in the plasma, with notable individual variability. The kinetics in the brain with apparent radioactivity retention suggested that the lipophilic radiometabolite could enter the brain. A dual-input graphical model, an analytical model designed in consideration of a radiometabolite entering the brain, well described the kinetics of [11C]HMS011. A reference tissue model showed small radioligand binding potential (BP*ND) values in the cortical regions (BP*ND = 0-0.15). These data suggested specific binding component of [11C]HMS011 in the brain. CONCLUSIONS Kinetic analyses support some specific binding of [11C]HMS011 in the human cortex. However, this ligand may not be suitable for practical AMPA receptor PET imaging due to the small dynamic range and metabolite in the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography.

In previous in vivo studies with mice, rats and monkeys, we have demonstrated that [11C]TMSX ([7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine) is a potential radioligand for mapping adenosine A2A receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. A suitable preparation method for [11C]TMSX injection was est...

متن کامل

Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study.

In previous in vivo studies with mice, rats, cats and monkeys, we have demonstrated that [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)- 1,3,7-trimethylxanthine ([11C]TMSX) is a potential radioligand for mapping adenosine A2A receptors of the brain by positron emission tomography (PET). In the present study, we studied the potential of [11C]TMSX for myocardial imaging. Uptake of radioactivity by...

متن کامل

Preclinical studies on [11C]MPDX for mapping adenosine A1 receptors by positron emission tomography.

In previous in vivo studies with mice, rats and cats, we have demonstrated that [11C]MPDX ([1-methyl-11C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine) is a potential radioligand for mapping adenosine A1 receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. The radiation absorbed-dose by [11C]MPDX in humans estimated from the tis...

متن کامل

Dopamine D(2/3) receptor occupancy of apomorphine in the nonhuman primate brain--a comparative PET study with [11C]raclopride and [11C]MNPA.

Binding studies in vitro have demonstrated that the dopamine D2 receptor may exist in two affinity states for agonists. The high affinity state is thought to represent the functional state of the receptor and proportions might alter during disease. In vitro studies further indicate that agonists induce measurable D(2) receptor occupancy at clinically relevant concentrations but only when measur...

متن کامل

11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors.

UNLABELLED The development of the radioligands for PET imaging of the cerebral cannabinoid receptor (CB1) is of great importance for studying its role in neuropsychiatric disorders, obesity, and drug dependence. None of the currently available radioligands for CB1 are suitable for quantitative PET, primarily because of their insufficient binding potential (BP) in brain or low penetration throug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017